
Adaptive Resonance Theory (ART) networks perform
Adaptive Resonance Theory (ART)

Adaptive Resonance Theory (ART) networks perform
completely unsupervised learning.
Their competitive learning algorithm is similar to theTheir competitive learning algorithm is similar to the
first (unsupervised) phase of CPN learning.
However, ART networks are able to grow additional o e e , et o s a e ab e to g o add t o a
neurons if a new input cannot be categorized
appropriately with the existing neurons.
A vigilance parameter ρ determines the tolerance of
this matching process.
A greater value of ρ leads to more, smaller clusters (=
input samples associated with the same winner

)neuron).

ART networks consist of an input layer and an output layer

Adaptive Resonance Theory (ART)
ART networks consist of an input layer and an output layer.
We will only discuss ART-1 networks, which receive binary
input vectorsinput vectors.
Bottom-up weights are used to determine output-layer
candidates that may best match the current input.
Top-down weights represent the “prototype” for the cluster
defined by each output neuron.
A close match between input and prototype is necessary
for categorizing the input.
Fi di thi t h i lti l i l hFinding this match can require multiple signal exchanges
between the two layers in both directions until “resonance”
is established or a new neuron is added.is established or a new neuron is added.

Adaptive Resonance Theory (ART)

ART networks tackle the stability-plasticity dilemma:

Plasticity: They can always adapt to unknown inputsPlasticity: They can always adapt to unknown inputs
(by creating a new cluster with a new weight vector) if
the given input cannot be classified by existingthe given input cannot be classified by existing
clusters.

Stability: Existing clusters are not deleted by the
introduction of new inputs (new clusters will just be
created in addition to the old ones).

Problem: Clusters are of fixed size depending on ρProblem: Clusters are of fixed size, depending on ρ.

The ART-1 Network

Output layer
1 2 3

p y
with inhibitory
connections

),(3443 tb),(3,44,3 tb

1 2 3 4Input
layery

A. Initialize each top-down weight tl,j (0) = 1;

B. Initialize bottom-up weight bj,l (0) = ;

C. While the network has not stabilized, do 1
1
+n,

1. Present a randomly chosen pattern x = (x1,…,xn) for learning

2. Let the active set A contain all nodes; calculate
yj = bj,1 x1 +…+bj,n xn for each node j A;∈j j, j,

3. Repeat
a) Let j* be a node in A with largest yj, with ties being broken arbitrarily;
b) Compute s* = (s*

1,…,s*
n) where s*

l = tl,j* xl ;
c) Compare similarity between s* and x with the given vigilance parameter ρ :

if < ρ then remove j* from set A
∑
∑

=

=
n

l l

n

l l

x

s

1

1
*

else associate x with node j* and update weights:

bj*l (new) = tl,j* (new) =

∑ =l l1

∑+ n

l ljl

ljl

xoldt

xoldt

1 *

*,

)(5.0

)(
ljl xoldt)(*,

Until A is empty or x has been associated with some node j

4. If A is empty, then create new node whose weight vector coincides with current input
pattern x;

∑ =l ljl1 *,)(

p ;

end-while

For this example let us assume that we have an
ART Example Computation

For this example, let us assume that we have an
ART-1 network with 7 input neurons (n = 7) and
initially one output neuron (n = 1).y p ()
Our input vectors are
{(1, 1, 0, 0, 0, 0, 1),{(, , 0, 0, 0, 0,),
(0, 0, 1, 1, 1, 1, 0),
(1, 0, 1, 1, 1, 1, 0),
(0, 0, 0, 1, 1, 1, 0),
(1, 1, 0, 1, 1, 1, 0)}

d h i il 0and the vigilance parameter ρ = 0.7.
Initially, all top-down weights are set to tl,1(0) = 1, and

ll b tt i ht t t b (0) 1/8all bottom-up weights are set to b1,l(0) = 1/8.

For the first input vector, (1, 1, 0, 0, 0, 0, 1), we get:
ART Example Computation

p () g

8
31

8
10

8
10

8
10

8
10

8
11

8
11

8
1

1 =⋅+⋅+⋅+⋅+⋅+⋅+⋅=y

Clearly, y1 is the winner (there are no competitors).
Since we have:

,7.01
3
3

7

1

7

1 1, >==
∑
∑ =

l l

l ll

x

xt

the vigilance condition is satisfied and we get the
following new weights:

1∑ =l l

11following new weights:

5.3
1

35.0
1)1()1()1(7,12,11,1 =
+

=== bbb

0)1()1()1()1(bbbb 0)1()1()1()1(6,15,14,13,1 ==== bbbb

Also, we have:
ART Example Computation

lll xtt)0()1(0,1, =

We can express the updated weights as matrices:
T1000011)1(⎤⎡B

5.3
1 0 0 0 0

5.3
1

5.3
1)1(⎥⎦

⎤
⎢⎣
⎡=B

[]T1000011)1(T

Now we have finished the first learning step and

[]T1 0 0 0 0 1 1)1(=T

Now we have finished the first learning step and
proceed by presenting the next input vector.

For the second input vector, (0, 0, 1, 1, 1, 1, 0), we get:
ART Example Computation

p () g

00
5.3

1101010100
5.3

10
5.3

1
1 =⋅+⋅+⋅+⋅+⋅+⋅+⋅=y

Of course, y1 is still the winner.
However, this time we do not reach the vigilance
threshold:

7000
7

1 1, <∑ =l ll xt

This means that we have to generate a second node

.7.00
47

1

1 <==
∑ =l l

l

x

This means that we have to generate a second node
in the output layer that represents the current input.
Therefore, the top-down weights of the new node will , p g
be identical to the current input vector.

The new unit’s bottom-up weights are set to zero in
ART Example Computation

p g
the positions where the input has zeroes as well.
The remaining weights are set to:
1/(0.5 + 0 + 0 + 1 + 1 + 1 + 1 + 0)
This gives us the following updated weight matrices:

T

0111100
3.5

1 0 0 0 0 3.5
1 3.5

1
)2(

⎥
⎥
⎤

⎢
⎢
⎡

=B
0 4.5

1 4.5
1 4.5

1 4.5
1 0 0 ⎥⎦⎢⎣

T1000011 ⎤⎡
0 1 1 1 1 0 0
1 0 0 0 0 1 1

)2(⎥
⎦

⎤
⎢
⎣

⎡
=T

For the third input vector, (1, 0, 1, 1, 1, 1, 0), we have:
ART Example Computation

p ()

5.4
4 ;

5.3
1

21 == yy

Here, y2 is the clear winner.
This time we exceed the vigilance threshold again:

.7.08.0
5
4

7

7

1 2, >==
∑
∑ =l ll

x

xt

Therefore, we adapt the second node’s weights.
E h d i h i l i li d b h

5
1∑ =l lx

Each top-down weight is multiplied by the
corresponding element of the current input.

The new unit’s bottom-up weights are set to the top-
ART Example Computation

p g p
down weights divided by
(0.5 + 0 + 0 + 1 + 1 + 1 + 1 + 0).
It turns out that, in the current case, these updates do
not result in any weight changes at all:

T

0111100
3.5

1 0 0 0 0 3.5
1 3.5

1
)3(

⎥
⎥
⎤

⎢
⎢
⎡

=B
0 4.5

1 4.5
1 4.5

1 4.5
1 0 0 ⎥⎦⎢⎣

T1000011 ⎤⎡
0 1 1 1 1 0 0
1 0 0 0 0 1 1

)3(⎥
⎦

⎤
⎢
⎣

⎡
=T

For the fourth input vector, (0, 0, 0, 1, 1, 1, 0), it is:
ART Example Computation

p ()

5.4
3 ;0 21 == yy

Again, y2 is the winner.
The vigilance test succeeds once again:

.7.01
3
3

7

7

1 2, >==
∑
∑ =l ll

x

xt

Therefore, we adapt the second node’s weights.
A l h d i h i l i li d b h

3
1∑ =l lx

As usual, each top-down weight is multiplied by the
corresponding element of the current input.

The new unit’s bottom-up weights are set to the top-
ART Example Computation

p g p
down weights divided by
(0.5 + 0 + 0 + 0 + 1 + 1 + 1 + 0).
This gives us the following new weight matrices:

T111 ⎤⎡
T

0 3 5
1 3 5

1 3 5
1 0 0 0

3.5
1 0 0 0 0 3.5

1 3.5
1

)4(
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=B

3.53.53.5 ⎦⎣

T1 0 0 0 0 1 1
)4(⎥

⎤
⎢
⎡

T
0 1 1 1 0 0 0

)4(⎥
⎦

⎢
⎣

=T

Finally, the fifth input vector, (1, 1, 0, 1, 1, 1, 0), gives
ART Example Computation

y p () g
us:

3
3 ;

3
2

21 == yy

Once again, y2 is the winner.
5.3

;
5.3 21 yy

The vigilance test fails this time:

70603
7

1 2, <∑ =l ll xt

This means that the active set A is reduced to contain

.7.06.0
57

1

1 <==
∑ =l l

l

x

This means that the active set A is reduced to contain
only the first node, which becomes the uncontested
winnerwinner.

The vigilance test fails for the first unit as well:
ART Example Computation

g

.7.04.0
5
2

7

7

1 1, <==
∑
∑ =

l

l ll

x

xt

We thus have to create a third output neuron, which
gives us the following new weight matrices:

1∑ =l lx

gives us the following new weight matrices:
T

⎥
⎥
⎤

⎢
⎢
⎡

111
3.5

1 0 0 0 0 3.5
1 3.5

1

B

⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣

=

 0 5.5
1 5.5

1 5.5
1 0 5.5

1 5.5
1

0 3.5
1 3.5

1 3.5
1 0 0 0)5(

T

0 1 1 1 0 0 0
1 0 0 0 0 1 1

)5(
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

=T
0 1 1 1 0 1 1 ⎥⎦⎢⎣

In the second epoch, the first input vector, (1, 1, 0, 0,
ART Example Computation

p p (
0, 0, 1), gives us:

2;0;3
=== yyy

Here, y1 is the winner, and the vigilance test succeeds:
5.5

 ;0 ;
5.3 321 === yyy

, y1 , g

.7.013
7

7

1 1, >==
∑
∑ =l ll xt

Since the current input is identical to the winner’s top-

37

1∑ =l lx

Since the current input is identical to the winner s top
down weights, no weight update happens.

The second input vector, (0, 0, 1, 1, 1, 1, 0), results in:
ART Example Computation

p ()

5.5
3 ;

5.3
3 ;0 321 === yyy

Now y2 is the winner, and the vigilance test succeeds:
5.55.3

7∑ .7.01
3
3

7

1

7

1 2, >==
∑
∑

=

=

l l

l ll

x

xt

Again, because the current input is identical to the
winner’s top-down weights, no weight update occurs.winner s top down weights, no weight update occurs.

The third input vector, (1, 0, 1, 1, 1, 1, 0), give us:
ART Example Computation

p () g

5.5
4 ;

5.3
3 ;

5.3
1

321 === yyy

Once again, y2 is the winner, but this time the vigilance
test fails:

5.55.35.3

.7.06.03
7

7

1 2, <==
∑
∑ =l ll xt

This means that the active set is reduced to A = {1, 3}.

57

1∑ =l lx

This means that the active set is reduced to A {1, 3}.
Since y3 > y1, the third node is the new winner.

The third node does satisfy the vigilance threshold:
ART Example Computation

y g

.7.08.0
5
4

7

7

1 3, >==
∑
∑ =

l

l ll

x

xt

This gives us the following updated weight matrices:
1∑ =l lx

T

B
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

= 0 3 5
1 3 5

1 3 5
1 0 0 0

3.5
1 0 0 0 0 3.5

1 3.5
1

)8(

⎥
⎥
⎦⎢

⎢
⎣ 0 4.5

1 4.5
1 4.5

1 0 0 4.5
1

3.53.53.5)(

T1000011 ⎤⎡
T

0111001
0 1 1 1 0 0 0
1 0 0 0 0 1 1

)8(
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=T

0 1 1 1 0 0 1 ⎥⎦⎢⎣

For the fourth vector, (0, 0, 0, 1, 1, 1, 0), the second
ART Example Computation

()
node wins, passes the vigilance test, but no weight
changes occur.

The fifth vector, (1, 1, 0, 1, 1, 1, 0), makes the second
unit win, which fails the vigilance test., g
The new winner is the third output neuron, which
passes the vigilance test but does not lead to any
weight modifications.
Further presentation of the five sample vectors do not
lead to any weight changes; the network has thus
stabilized.

Adaptive Resonance Theory

Illustration of the categories (or clusters) in input space formed by ART
networks. Notice that increasing ρ leads to narrower cones and not to
wider ones as suggested by the figure.

A bl i h ART 1 i h d d i h

Adaptive Resonance Theory
A problem with ART-1 is the need to determine the
vigilance parameter ρ for a given problem, which can
be trickybe tricky.
Furthermore, ART-1 always builds clusters of the same
size regardless of the distribution of samples in thesize, regardless of the distribution of samples in the
input space.
Nevertheless, ART is one of the most important andNevertheless, ART is one of the most important and
successful attempts at simulating incremental learning
in biological systems.

